Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70.081
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article En | LILACS | ID: biblio-1538020

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
2.
Sci Rep ; 14(1): 8399, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600229

Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.


Antifungal Agents , Neosartorya , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Aspergillus/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Metabolome , Microbial Sensitivity Tests
3.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656548

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Antifungal Agents , Aspergillus fumigatus , Benzaldehydes , Biofilms , Fusarium , Microbial Sensitivity Tests , Polyphenols , Tannins , Benzaldehydes/pharmacology , Fusarium/drug effects , Tannins/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Aspergillus fumigatus/drug effects , Animals , Aspergillosis/microbiology , Aspergillosis/drug therapy , Virulence/drug effects , Larva/microbiology , Larva/drug effects , Fusariosis/drug therapy , Fusariosis/microbiology , Spores, Fungal/drug effects , Moths/microbiology , Moths/drug effects
4.
ACS Appl Mater Interfaces ; 16(15): 18434-18448, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38579182

The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.


Antifungal Agents , Biphenyl Compounds , Clotrimazole , Propylene Glycols , Clotrimazole/chemistry , Antifungal Agents/chemistry , Biological Availability , Solubility , Water , Tablets
5.
J Int Med Res ; 52(4): 3000605241234574, 2024 Apr.
Article En | MEDLINE | ID: mdl-38597095

Blood-disseminated Aspergillus spondylitis in immunocompetent individuals is rare. The clinical, imaging, and pathological manifestations of this condition are not specific. Therefore, this disease is prone to misdiagnosis and a missed diagnosis. Systemic antifungal therapy is the main treatment for Aspergillus spondylitis. We report a case of blood-disseminated Aspergillus versicolor spondylitis in a patient with normal immune function. The first antifungal treatment lasted for 4 months, but Aspergillus spondylitis recurred a few months later. A second antifungal treatment course was initiated for at least 1 year, and follow-up has been ongoing. Currently, there has been no recurrence.


Aspergillosis , Spondylarthritis , Spondylitis , Humans , Antifungal Agents/therapeutic use , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus , Spondylitis/diagnostic imaging , Spondylitis/drug therapy
6.
Invest Ophthalmol Vis Sci ; 65(4): 31, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38635243

Purpose: The poor visual outcomes associated with fungal keratitis (FK) underscore a need to identify fungal pathways that can serve as novel antifungal targets. In this report, we investigated whether hypoxia develops in the FK cornea and, by extension, if fungal hypoxia adaptation is essential for virulence in this setting. Methods: C57BL/6J mice were inoculated with Aspergillus fumigatus and Fusarium solani var. petroliphilum via topical overlay or intrastromal injection. At various time points post-inoculation (p.i.), animals were injected with pimonidazole for the detection of tissue hypoxia through immunofluorescence imaging. The A. fumigatus srbA gene was deleted through Cas9-mediated homologous recombination and its virulence was assessed in the topical infection model using slit-lamp microscopy and optical coherence tomography (OCT). Results: Topical inoculation with A. fumigatus resulted in diffuse pimonidazole staining across the epithelial and endothelial layers within 6 hours. Stromal hypoxia was evident by 48 hours p.i., which corresponded to leukocytic infiltration. Intrastromal inoculation with either A. fumigatus or F. solani similarly led to diffuse staining patterns across all corneal cell layers. The A. fumigatus srbA deletion mutant was unable to grow at oxygen levels below 3% in vitro, and corneas inoculated with the mutant failed to develop signs of corneal opacification, inflammation, or fungal burden. Conclusions: These results suggest that fungal antigen rapidly drives the development of corneal hypoxia, thus rendering fungal SrbA or related pathways essential for the establishment of infection. Such pathways may therefore serve as targets for novel antifungal intervention.


Corneal Ulcer , Eye Infections, Fungal , Fusarium , Nitroimidazoles , Mice , Animals , Mice, Inbred C57BL , Aspergillus fumigatus , Antifungal Agents , Hypoxia
7.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38637784

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Alternaria , Metal Nanoparticles , Quercus , Solanum lycopersicum , Silver/chemistry , Metal Nanoparticles/chemistry , Antifungal Agents , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , X-Ray Diffraction , Anti-Bacterial Agents
8.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38641593

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Candida glabrata , Oleic Acid , Candida glabrata/genetics , Candida glabrata/metabolism , Oleic Acid/metabolism , Carbon/metabolism , Glycerol , Antifungal Agents/metabolism , Oxidative Stress , Biofilms , Glucose/metabolism , Glyoxylates/metabolism
9.
Sci Rep ; 14(1): 9392, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658769

A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.


Amino Acids , Antifungal Agents , Drug Design , Insecticides , Molecular Docking Simulation , Insecticides/pharmacology , Insecticides/chemical synthesis , Insecticides/chemistry , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Amino Acids/chemistry , Aphids/drug effects , Tetranychidae/drug effects , Structure-Activity Relationship , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Microbial Sensitivity Tests
10.
BMC Infect Dis ; 24(1): 439, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658844

BACKGROUND: In recent years, the prevalence of respiratory fungal diseases has increased. Polyene antifungal drugs play a pivotal role in the treatment of these conditions, with amphotericin B (AmB) being the most representative drug. This study aimed to evaluate the efficacy and safety of topical administration of AmB in the treatment of respiratory fungal infections. METHODS: We conducted a retrospective study on hospitalized patients treated with topical administered AmB for respiratory fungal infections from January 2014 to June 2023. RESULTS: Data from 36 patients with invasive pulmonary fungal infections treated with topical administration of AmB were collected and analyzed. Nebulization was administered to 27 patients. After the treatment, 17 patients evidenced improved conditions, whereas 10 patients did not respond and died in the hospital. One patient experienced an irritating cough as an adverse reaction. Seven patients underwent tracheoscopic instillation, and two received intrapleural irrigation; they achieved good clinical therapeutic efficacy without adverse effects. CONCLUSION: The combined application of systemic antifungal treatment and topical administration of AmB yielded good therapeutic efficacy and was well-tolerated by the patients. Close monitoring of routine blood tests, liver and kidney function, and levels of electrolytes, troponin, and B-type natriuretic peptide supported this conclusion.


Administration, Topical , Amphotericin B , Antifungal Agents , Humans , Amphotericin B/administration & dosage , Amphotericin B/therapeutic use , Amphotericin B/adverse effects , Male , Female , Retrospective Studies , Middle Aged , Antifungal Agents/administration & dosage , Antifungal Agents/therapeutic use , Antifungal Agents/adverse effects , Aged , Adult , Treatment Outcome , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Aged, 80 and over , Lung Diseases, Fungal/drug therapy , Young Adult
11.
Mar Drugs ; 22(4)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38667797

The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.


Antifungal Agents , Aquatic Organisms , Antifungal Agents/pharmacology , Humans , Animals , Fungi/drug effects , Fungi/metabolism , Secondary Metabolism , Biological Products/pharmacology
12.
Mar Drugs ; 22(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38667806

Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 µg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 µg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.


Anti-Bacterial Agents , Lactams, Macrocyclic , Microbial Sensitivity Tests , Multigene Family , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Humans , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Polyenes/pharmacology , Polyenes/isolation & purification , Polyenes/chemistry , Candida albicans/drug effects , Cell Line, Tumor , Antarctic Regions , Animals , Porifera/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
13.
Toxins (Basel) ; 16(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38668617

The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.


Antifungal Agents , Ribosome Inactivating Proteins , Ribosome Inactivating Proteins/pharmacology , Antifungal Agents/pharmacology , Plant Proteins/pharmacology , Plant Proteins/genetics , Fungi/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plants, Genetically Modified , Animals , Fungicides, Industrial/pharmacology
14.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38557062

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Antifungal Agents , Rhizoctonia , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Rhizoctonia/drug effects , Terpenes/pharmacology , Terpenes/chemical synthesis , Terpenes/chemistry , Stereoisomerism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Microbial Sensitivity Tests
15.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642138

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Ferric Compounds , Metal Nanoparticles , Satureja , Silver/pharmacology , Silver/metabolism , Metal Nanoparticles/chemistry , Antifungal Agents/pharmacology , Satureja/metabolism , Magnetic Iron Oxide Nanoparticles , X-Ray Diffraction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology
16.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642140

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Bacillus amyloliquefaciens , Bacillus , Probiotics , Animals , Bacillus amyloliquefaciens/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Phylogeny
17.
Curr Microbiol ; 81(6): 142, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625396

The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production. After 72 h of fermentation corresponding to the end of incubation period, B. methylotrophicus DCS1 is able to produce a mixture of surfactin, pumilacidin, iturin A/mycosubtilin, iturin C1, bacillomycin D and fengycins A and B isoforms. The results of in vitro antifungal experiments suggest that B. methylotrophicus DCS1 has a significant potential as a biocontrol agent, owing to lipopeptides produced, endowed with antifungal activity against several phytopathogenic fungi. The curative treatment of tomato plants with DCS1 bacterial suspension was more effective in the protection against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) than the preventive treatment by comparing the average number of leaves remaining healthy after 30 days of each treatment and the appearance of tomato plants roots. The results indicate that B. methylotrophicus DCS1 exhibit a significant suppression of Fusarium wilt symptoms in tomato plants comparable to that of commercial fungicides and could be an alternative to chemically synthesized pesticides.


Bacillus , Fusarium , Solanum lycopersicum , Antifungal Agents/pharmacology , Lipopeptides/pharmacology , Protein Isoforms
18.
Appl Environ Microbiol ; 90(4): e0178223, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38557086

Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.


Aspergillus fumigatus , Fungicides, Industrial , Humans , United States , Fungicides, Industrial/pharmacology , Azoles/pharmacology , Phylogeny , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Microbial Sensitivity Tests
19.
Curr Microbiol ; 81(5): 128, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580768

Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.


Anti-Infective Agents , Bacillus , Antifungal Agents/chemistry , Bacillus/metabolism , Fungi/metabolism , Anti-Infective Agents/metabolism , Bacteria/metabolism , Plant Extracts/metabolism , Endophytes
20.
J Infect Dev Ctries ; 18(3): 473-479, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38635625

INTRODUCTION: Candida albicans and Aspergillus fumigatus are two important agents of Healthcare-associated infections. This study aimed to evaluate the antifungal activity of ozone (O3) gas produced by two commercial devices against cultures of these two species. METHODOLOGY: Sterile plastic plates were inoculated with C. albicans and A. fumigatus and placed on a countertop at three distances (30 cm, 1 m, and 2 m) and three positions in relation to the wall (near, middle, and away), considering the source of O3. Plates were exposed to O3 for one hour and incubated. After incubation, the counting of colony-forming units was performed. As a control, an inoculated plate was incubated, without being exposed to O3. Tests were carried out with two different devices (namely, Mod.I and Mod.II), with the air conditioner on and off, in triplicate. RESULTS: Both devices showed antifungal activity. Mod. I presented better results, due to a higher flow rate. The best activity was on plates at 30 cm, middle position. Contrarily, on plates at 2m, near the wall, the inhibition activity was lower. The best results were obtained with the air conditioner off. Candida albicans was more sensitive to O3 than A. fumigatus. CONCLUSIONS: This method of decontamination by O3 gas shows potential due to its fast and easy execution. The establishment of new protocols for hygiene and hospital disinfection using this approach should be considered, which may reduce environmental contamination by fungi and, consequently, the burden of fungal infections.


Candida albicans , Mycoses , Aspergillus fumigatus , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
...